How Well Does the Finite Fourier Transform Approximate the Fourier Transform?
نویسندگان
چکیده
We show that the answer to the question in the title is “very well indeed.” In particular, we prove that, throughout the maximum possible range, the finite Fourier coefficients provide a good approximation to the Fourier coefficients of a piecewise continuous function. For a continuous periodic function, the size of the error is estimated in terms of the modulus of continuity of the function. The estimates improve commensurately as the functions become smoother. We also show that the partial sums of the finite Fourier transform provide essentially as good an approximation to the function and its derivatives as the partial sums of the ordinary Fourier series. Along the way we establish analogues of the Riemann-Lebesgue lemma and the localization principle. c © 2004 Wiley Periodicals, Inc.
منابع مشابه
Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملOn the Numerical Stability of Fourier Extensions
An effective means to approximate an analytic, nonperiodic function on a bounded interval is by using a Fourier series on a larger domain. When constructed appropriately, this so-called Fourier extension is known to converge geometrically fast in the truncation parameter. Unfortunately, computing a Fourier extension requires solving an ill-conditioned linear system, and hence one might expect s...
متن کاملSplitting methods for the nonlocal Fowler equation
We consider a nonlocal scalar conservation law proposed by Andrew C. Fowler to describe the dynamics of dunes, and we develop a numerical procedure based on splitting methods to approximate its solutions. We begin by proving the convergence of the well-known Lie formula, which is an approximation of the exact solution of order one in time. We next use the split-step Fourier method to approximat...
متن کاملResidual analysis using Fourier series transform in Fuzzy time series model
In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...
متن کامل